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ELIMINATION OF THE VIBRATIONAL DEGREE OF FREEDOM

Let us make the canonical transformation of Hamiltonian H = HO +H ints

ﬁeff = e SHeS = ffo + I:[int + [ﬁo, S] + [Hintv SY}

+5[[Ho, 51, 8]+ 5 [[Hine, 51, 5] + . )

Our goal is to choose S in a such a way that all terms of order g in H.g are canceled and the first term describing
the spin-boson interaction is of order g2/w. If we determine S by the condition

I;[int"" [ﬁ07‘§] :07 (2)
then the effective Hamiltonian becomes

I:Ieff ~ ﬁo —+ %[Hinta S} (3)

Let us consider the time-dependent operator S(t) = eigot/hge_iﬁot/h, which obeys the Heisenberg equation ihS’(t) =
[S(t), Ho]. Using Eq. (2) we arrive at the equation

ihS(t) = Hin (1), (4)

where Hipy (t) = eiHot/hﬁinte_iHUt/h. Solving Eq. (4) we determine the desired operator S.

Jaynes-Cummings model

We identify Ho = hwa'a and Hiy = hg(o~al + ota) + 23 (af + a). Using Eq. (4) we obtain

R axF
S=Z(cta—oal)+ :

w 2hw (@- dT)’ (5)

which fulfills the condition (2). For the effective Hamiltonian we derive

2
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where Qp = gz, F/2hw is the Rabi frequency and H' = %[[ﬁint, S],5] + ... contains the higher-order terms in (1).
We find
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As long as g/w < 1 the higher-order terms can be neglected and thus the lowest-order effective Hamiltonian is given
by Eq. (6).



Quantum Rabi Model

Here the interaction Hamiltonian is f[im = hgaw(dT +a)+ Z"‘g (a + @) and the canonical transformation is given
by the operator

(a—at). (8)

The effective Hamiltonian is

) ha® (2 F)2
Hog = hiwa'a — 20Qpo, — -2 (Zax )"
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Remarkably, due to the equality [[Hiy, S], 5] = 0 all higher-order terms in Eq. (1) vanish.

Jahn-Teller Model
Following the same procedure we have
Hy = hw(ala, + aTay)
ﬁint = thz(&L +ag) + hgoy(ay + ay) +
0]+ dy). (10)
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In this case the canonical transformation is represented by the operator
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Using Eq. (11) we obtain the following effective Hamiltonian
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where Q, , = gzF, ,/hw are the respective Rabi driving frequencies. The next higher-order terms in H' (12) are
given by
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DYNAMICAL DECOUPLING

Let us consider the Jaynes-Cummings quantum probe in the presence of additional strong carrier driving field
H=Hyc+Hp+Hy, Hy= hQ(U_,_ei‘;$ + U_e_i¢). (14)

Here 2 is the Rabi frequency for resonant carrier transition and ¢ is the respective phase where we set ¢ = 0. The
effect of the strong carrier excitation is to create dressed states defined by o, |+) = =+ |£) which are separated by



energy gap h{). These states are immune to dephasing caused by the thermal fluctuations. Indeed, expressing the
effective Hamiltonian in the dressed state basis o, |[£) = £ |£) we have

HIE = 1€ = Qp) () (+H = [=)(=]) — %QQ(HM—I +[=)(+)ala. (15)

In this picture the effect of the thermally induce fluctuations is to drive transition between |+) and |—) states. However,
as long as the energy gap (2 is much higher than g2/w (€ > ¢%/w) such transitions are highly supressed which allows
to neglect the second term in (15) in the rotating-wave approximation. In order to remove the dependence of the
Rabi frequency €2 in the measured signal we suggest to use a spin-echo technique. First the system is prepared in the
state |1) = %(H—) + |—)) which evolves under the action of Hamiltonian (15) for a time period ¢/2 such that we have

[(t)2)) = (e Q= 2rt/2| ) 4 l(Q=2r)t/2|_)) //2. Then the phase of the strong carrier driving field is switch by 7
and the state evolves to |1(t/2)) — [¢(t)) = (27t |+) + e7%7t|-))//2. Final read-out of the ion states in the |1),
|}) basis yield probability outcome P;(t) = cos?(Q2pt).



